2011年9月26日星期一

A heart of gold

A team of researchers at MIT and Children's Hospital Boston has built cardiac patches studded with tiny gold wires that could be used to create pieces of tissue whose cells all beat in time, mimicking the dynamics of natural heart muscle. The development could someday help people who have suffered heart attacks.

The study, reported this week in Nature Nanotechnology , promises to improve on existing cardiac patches, which have difficulty achieving the level of conductivity necessary to ensure a smooth, continuous "beat" throughout a large piece of tissue.

"The heart is an electrically quite sophisticated piece of machinery," says Daniel Kohane, a professor in the Harvard-MIT Division of Health Sciences and Technology (HST) and senior author of the paper. "It is important that the cells beat together, or the tissue won't function properly."

The unique new approach uses gold nanowires scattered among cardiac cells as they're grown in vitro, a technique that "markedly enhances the performance of the cardiac patch," Kohane says. The researchers believe the technology may eventually result in implantable patches to replace tissue that's been damaged in a heart attack.

Co-first authors of the study are MIT postdoc Brian Timko and former MIT postdoc Tal Dvir, now at Tel Aviv University in Israel; other authors are their colleagues from HST, Children's Hospital Boston and MIT's Department of Chemical Engineering, including Robert Langer, the David H. Koch Institute Professor.

To build new tissue, biological engineers typically use miniature scaffolds resembling porous sponges to organize cells into functional shapes as they grow. Traditionally, however, these scaffolds have been made from materials with poor electrical conductivity — and for cardiac cells, which rely on electrical signals to coordinate their contraction, that's a big problem.

"In the case of cardiac myocytes in particular, you need a good junction between the cells to get signal conduction," Timko says. But the scaffold acts as an insulator, blocking signals from traveling much beyond a cell's immediate neighbors, and making it nearly impossible to get all the cells in the tissue to beat together as a unit.

To solve the problem, Timko and Dvir took advantage of their complementary backgrounds — Timko's in semiconducting nanowires, Dvir's in cardiac-tissue engineering — to design a brand-new scaffold material that would allow electrical signals to pass through.

"We started brainstorming, and it occurred to me that it's actually fairly easy to grow gold nanoconductors, which of course are very conductive," Timko says. "You can grow them to be a couple microns long, which is more than enough to pass through the walls of the scaffold."

没有评论:

发表评论