2011年6月22日星期三

ORNL researchers win 7 R&D 100 awards

Scientists and engineers at the Department of Energy's Oak Ridge National Laboratory have received seven R&D 100 Awards presented by R&D Magazine.

These awards, sometimes referred to as the "Academy Awards of Science," honor the 100 most outstanding advances in technology for the year and are chosen by an expert panel of independent judges and the editors of R&D Magazine.

"I want to congratulate this year's R&D 100 award winners," Energy Secretary Steven Chu said. "The Department of Energy's national laboratories and sites are at the forefront of innovation, and it is gratifying to see their work recognized once again. The cutting-edge research and development done in our national labs and facilities is helping to meet our energy challenges, strengthen our national security and enhance our economic competitiveness."

The seven awards bring the total number of R&D 100 awards won by ORNL researchers over the years to 164.

"Winning seven of these prestigious awards is a testimony to the talent and creativity of a remarkable staff," ORNL Director Thom Mason said. "Our researchers do a tremendous job of delivering our mission of scientific discovery and innovation."

ORNL researchers were recognized for the following technologies:

Multiresolution Adaptive Numerical Environment for Scientific Simulations, submitted and developed by ORNL with a team led by Robert Harrison and George Fann with Judith Hill, Diego Galindo and Jun Jia of the Computer Science and Mathematics Division and Rebecca Hartman-Baker of the Oak Ridge Leadership Computing Facility. Harrison is also the director of the Joint Institute for Computational Sciences.

MADNESS is a free open-source general purpose user-friendly numerical framework and software for the development scientific simulations from laptops to massively parallel supercomputers. MADNESS utilizes the latest parallel computing and solution methodologies to solve many dimensional integral and differential equations accurately and precisely for real-world problems. MADNESS provides a new platform for scientists and engineers to easily create new applications with assurance in the exactness of their results. Funding for this project was provided by the DOE Office of Science, the National Science Foundation Office of Cyber Infrastructure and Division of Chemistry, and the Defense Advanced Research Projects Agency's Program in High-Productivity Computer Systems under subcontract from Argonne National Laboratory.

Mesoporous Carbon for Capacitive Deionization Electrodes for Desalination, developed and jointly submitted by ORNL's Sheng Dai and Richard Mayes of the Chemical Sciences Division, David DePaoli and Costas Tsouris of the Energy and Transportation Science Division, James Kiggans Jr. of the Materials Science and Technology Division, Craig Blue, director of the Energy Materials Program, Charles Schaich of the Measurment Science and Systems Engineering Division, former post doctoral researcher Xiquing Wang and Frederic W. Seamon III of Campbell Applied Physics.

This novel technology makes it possible to desalinate large quantities of water more effectively than conventional technologies. Instead of using thermal or membrane separation—which can be costly and consume high amounts of energy—this desalinization tool can absorb salt ions by running brackish water through mesoporous carbon, inexpensively making the water fit for human consumption. This technology could make it possible for large numbers of the world's population to create safe drinking water at a relatively low cost. The DOE's Office of Science and Office of Energy Efficiency and Renewable Energy provided funding for this research.

Nano-Optomechanical Hydrogen Safety Sensor Based on Nanostructured Palladium Layers, jointly submitted and developed by Nickolay Lavrik of the ORNL Center for Nanophase Materials Sciences, Panos Datskos, Scott Hunter and Barton Smith of the ORNL Measurement Science and Systems Engineering Division, and the University of Tennessee's Michael Sepaniak and James Patton.

This technology utilizes nano-sized palladium particles to more efficiently detect hydrogen levels at a lower cost than the competition. Palladium particles react immediately to the presence of hydrogen gas, making the sensor more sensitive when reading levels of hydrogen within any given environment. Other sensors utilize electricity to monitor hydrogen, but an electrical short could prove to be a fire hazard when working with the flammable element. This new technology eliminates that threat and can be used to monitor industrial building activities, rechargeable battery manufacturing and many other hydrogen-sensitive operations. This work was sponsored by DOE's Hydrogen and Fuel Cells Program and conducted in part at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the DOE Office of Basic Energy Sciences.

Self-assembled, Ferromagnetic-Insulator Nanocomposites for Ultrahigh-Density Data Storage, developed and submitted by Amit Goyal, Junsoo Shin, Claudia Cantoni and James Thompson of ORNL's Materials Science and Technology Division.

没有评论:

发表评论